

outline

- 1. why cycle?
- 2. (safety | health)
- 3. safe system
- 4. what next

In a city of many cyclists, why do they ride?

Copenhageners' reasons for cycling to and from work (multiple answers)

for people in a hurry

10-15 km/hr

Average speed in European urban centres at peak periods

12-14 km/hr (Dublin)

15 km/hr (Lyon)

15.5 km/hr (Copenhagen)

for people who can't afford to be late

for local shops

for safety?

Road fatalities, changes from 2006-10 to 2011-15

Modal shares of road fatalities, 2013-2015

Relative risk by mode

Relative risk of death/km bicycle vs. car

14 UK

11 Switzerland

6 Norway

6 Netherlands

Relative risk of death/hr of travel:

UK: 4

Belgium: 1

Risk of fatality per unit distance travelled, 2011-2015

■ City — Whole Country

Risk of fatality per unit distance travelled, 2011-2015

■ City — Whole Country

Risk of fatality per unit distance travelled, 2011-2015

Single bicycle crashes – e.g. with no crash opponent are significant and under-reported

Single bicycle crash involvement as % of all bicycle crash victims

Flanders/Brussels: 87%

Belgium: 73%

Netherlands: ~75%

The elderly are especially vulnerable

% of all bicycle crash deaths

60yrs and older:

Japan: 70%

Korea: 65%

Italy: 57%

Netherlands: 55%

Denmark: 49%

France: 45%

UK: 21%

After controlling for distance travelled and other potential confounders there is:

- no difference in crash likelihood and injury severity between EB and CB users
- crashes on EBs and CBs to be equally severe

Junctions and safety

11% of time in a junction

Junctions and safetye of fatal crashes

EU Fatal crashes by hour and month

absolute numbers , 2005-2010, n=12 554 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

EU Fatal crashes by hour and day of the week

absolute numbers , 2005-2010, n=12 554

for safety health

Cycling, as a moderate physical activity can significantly reduce mortality and morbidity due to:

Cardiovascular disease

Type-2 diabetes

Cancer (Colon, breast)

Osteoporosis

Depression

Impact greatest when 1st becoming active

for the economy

€513,190,000,000/yr

Economic impact cycling, European Union

more, safer, cycling

Many authorities cannot adequately assess whether or not policies improve safety

```
crashes (#)?

safety
=

(crash rate) exposure (km, trips)?
```


Police (official) records and hospital records do not concur.

Under-reporting is significant and widespread, especially for less severe injury crashes.

Austria bicycle injury crashes 2009:

5 495 (police)

28 200 (hospital)

37 000 (total, adjusted)

Police registered vs. real Cyclist serious injuries Netherlands (3 yr. avg.)

Police registered vs. real Cyclist serious injuries Netherlands (3 yr. avg.)

Do we make cyclists safe in the current traffic system?

Cycling fatalities and distance cycled by country

Cycling fatalities vs. distance cycled by city

Safe system

Functionality: Road design matches desired usage

Homogeneity: Speed management, Separation

Predictability: Avoid unexpected situations

Forgivingness: Minimise crash outcomes

Safe system

what next?

mobility in the city

mobility in the city

automation

detected, not connected

Sidewalk 9 000/hr Car storage

On-street bikeway 1000/hr

Mixed traffic lane frequent buses 1000-2800/hr

600-1600/hr

lane

Mixed traffic Mixed traffic lane 600-1600/hr

 Mixed traffic lane frequent buses 1000-2800/hr

On-street Car storage bikeway

1000/hr

Sidewalk 9000/hr

.

